Set Cover Problem

Given:

A Universe U of n elements
A collection of subsets of U,

$$
S=\left\{S_{1}, S_{2} \ldots . . S_{k}\right\}
$$

A cost function $c: S \rightarrow Q^{+}$

To Find: A minimum cost subcollection of S that covers all elements of U.

Some Notations and Definitions

C : set of elements already covered at the beginning of an iteration.

Cost Effectiveness of S: Average cost at which it covers new elements, i.e. $c(S) /|S-C|$.

Price of an element: Average cost at which it is covered, i.e. $\operatorname{price}(e)=c(S) /|S-C|$.

Greedy Set Cover Algorithm

1. $C \leftarrow \Phi$
2. While $C \neq U$ do

- Find the most cost-effective set in the current iteration, say S.
- Let $a=\frac{\cos t(S)}{S-C}$,i.e., the cost effectiveness of S
- Pick S, and for each e in S-C, price(e)= a
- $C \leftarrow C \cup S$

5. Output the picked sets.

The greedy algorithm is an $O(\log n)$ factor approximation algorithm: Proof Skipped.

Any Questions....

Thank you!

